TP208-12 ## APPENDIX C PART 572, SUBPART N (6-YEAR-OLD) DUMMY PERFORMANCE CALIBRATION TEST PROCEDURE ### **APPENDIX C** ## PART 572, SUBPART N DUMMY PERFORMANCE CALIBRATION TEST PROCEDURE ### **TABLE OF CONTENTS** | 1. | PURPOSE AND APPLICATION | | | |-----|--|---|--| | 2. | GENERAL REQUIREMENTS | | | | 3. | SECURITY | | | | 4. | GOOD HOU | SEKEEPING | | | 5. | TEST SCHE | DULING AND MONITORING | | | 6. | TEST DATA | DISPOSITION | | | 7. | GOVERNME | ENT FURNISHED PROPERTY (GFP) | | | 8. | | ON AND TEST INSTRUMENTATION | | | 9. | | \PHY | | | 10. | | IS | | | 11. | | EQUIREMENTS | | | | 11.1
11.2
11.3
11.4
11.5 | TRANSDUCER REQUIREMENTSOTHER TRANSDUCER CONDITIONSTHORAX IMPACTOR PROBEKNEE IMPACTOR PROBEGENERAL TEST CONDITIONS | C-6
C-6
 | | 12. | CALIBRATIO | ON TEST EXECUTION | | | 13. | POST TEST | REQUIREMENTS | | | 14. | REPORTS | | C-10 | | | 14.1
14.2 | APPARENT TEST FAILUREFINAL PERFORMANCE CALIBRATION REPORTS | C-10 | | 15. | DATA SHEE
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10 | DUMMY DAMAGE CHECKLIST EXTERNAL MEASUREMENTS HEAD DROP TEST NECK FLEXION TEST NECK EXTENSION TEST THORAX IMPACT TEST TORSO FLEXION TEST LEFT KNEE IMPACT TEST RIGHT KNEE IMPACT TEST INSTRUMENTATION CALIBRATION INFORMATION | C-13
C-22
C-25
C-27
C-32
C-37
C-40 | ## **ILLUSTRATIONS** | | | PAGE | |------|---|------| | 1C. | SIGN CONVENTION | | | 2C. | EXTERNAL DIMENSIONS SPECIFICATIONS | | | 3C. | EXTERNAL DIMENSIONS TEST SETUP FRONT VIEW | | | 4C. | EXTERNAL DIMENSIONS TEST SETUP SIDE VIEW | | | 5C. | HEAD DROP TEST SET-UP SPECIFICATION | | | 6C. | NECK PENDULUM SPECIFICATIONS | | | 7C. | NECK FLEXION TEST SETUP SPECIFICATIONS | | | 8C. | NECK EXTENSION TEST SETUP SPECIFICATIONS | | | 9C. | THORAX IMPACT TEST SETUP SPECIFICATIONS | | | 10C. | THORAX HYSTERESIS | | | 11C. | TORSO FLEXION TEST SETUP SPECIFICATIONS | | | 12C. | KNEE IMPACT TEST SETUP SPECIFICATIONS | C-44 | | | TABLES | | | 1C. | SIGN CONVENTION FOR HYBRID III TRANSDUCER OUTPUTS | | #### 1. PURPOSE AND APPLICATION The purpose of this laboratory procedure is to provide dummy users (independent testing laboratories under contract with the Office of Vehicle Safety Compliance) with standard test procedures for performing receiving-inspection and performance calibration tests on the Part 572, Subpart N dummy so that repetitive and correlative test results can be obtained. The following tests have been developed to establish a uniform calibration procedure for all users as the means of verifying the performance of the dummy. - A. EXTERNAL DIMENSIONS (drawing 127-0000 sheet 5 of 6, & PADI) - B. HEAD DROP TEST (572.122) - C. NECK FLEXION TEST (572.123(b)(1)) - D. NECK EXTENSION TEST 572.123(b)(2) - E. THORAX IMPACT TEST ((572.124) - F. TORSO FLEXION (572.125) - G. KNEE IMPACT TESTS (572.126) This laboratory procedure for the calibration of Part 572, Subpart N dummies must be used by National Highway Traffic Safety Administration (NHTSA) contract laboratories performing FMVSS 208 testing for the Office of Vehicle Safety Compliance (OVSC). #### 2. GENERAL REQUIREMENTS The Code of Federal Regulations (49CFR), Parts 571 and 572, was amended to adopt the Hybrid III, 6-Year-Old Child Dummy as the means of determining a vehicle's conformance to the performance requirements of FMVSS 208. Each Part 572, Subpart N dummy used in a compliance test must meet the specifications and performance criteria of Part 572 before and after each vehicle crash test or low risk deployment test in order to be an acceptable compliance test tool. The Part 572, Subpart N Hybrid III, 6-Year-Old Child Dummy consists of components and assemblies specified in the drawing and specifications package which is available from Reprographics Technologies, 9000 Virginia Manor Road, Beltsville, MD 20705, telephone - (301) 419-5070. #### 3. SECURITY All NHTSA Part 572, Subpart N test dummies delivered to the contract laboratory as Government Furnished Property (GFP) will be stored in a safe and secure area such as the dummy calibration laboratory. The contractor is financially responsible for any acts of theft and/or vandalism which occur during the storage of GFP. Any security problems shall be reported by telephone to the Industrial Property Manager (IPM), Office of Contracts and Procurement, within two working days after the incident. A letter containing specific details of the security problem will be sent to the IPM (with copy to the COTR) within 48 hours. The contractor is responsible for maintaining the NHTSA test dummies in good working order, and shall protect and segregate the data that evolves from conducting Part 572, Subpart N dummy calibration tests before and after each low risk deployment usage. No Information concerning the Part 572, Subpart N dummy calibration data shall be released to anyone except the COTR, unless specifically authorized by the COTR or the COTR's Branch or Division Chief. **NOTE:** No Individuals, other than contractor personnel directly involved in the dummy calibration test program, shall be allowed to witness dummy calibration tests unless specifically authorized by the COTR. #### 4. GOOD HOUSEKEEPING Contractors shall maintain the entire dummy calibration laboratory, test fixtures, and instrumentation in a neat, clean, and painted condition with test instruments arranged in an orderly manner consistent with good test laboratory housekeeping practices. #### 5. TEST SCHEDULING AND MONITORING The Part 572, Subpart N dummies are being calibrated as test tools to be used in a low risk deployment test to determine compliance with the requirements of FMVSS 208. The schedule for these performance calibration tests must be correlated with that of the vehicle tests. All testing shall be coordinated to allow monitoring by the COTR. #### 6. TEST DATA DISPOSITION The contractor shall make all dummy calibration data available to the COTR for review and analysis as required. All calibration test data for each particular Part 572, Subpart N dummy will be sent to the COTR with each test report. All backup data sheets, strip charts, recordings, plots, technicians notes, etc. shall be either sent to the COTR or destroyed at the conclusion of each delivery order, purchase order, etc. #### 7. GOVERNMENT FURNISHED PROPERTY (GFP) Part 572, Subpart N test dummies will be furnished to the contract laboratory by the OVSC. The dummies shall be stored in an upright sitting position with the weight supported by the internal structure of the pelvis. The dummies head shall be held upright by using a strap around the chest or the base of the neck so that the neck is not supporting the weight of the dummy. These dummies shall be stored in a secured room that is kept between 55°F and 85°F. The contractor will check dummy components for damage after each crash test and complete a dummy damage checklist that will be included with the posttest dummy calibration. The COTR will be kept informed of the dummies condition in order that replacement parts can be provided. The contractor shall calibrate the dummies before and verify the calibration after every crash or low risk deployment test. If the posttest verification is within the calibration specifications, it may be used as the pretest calibration for the next crash test or low risk deployment test. #### 8. CALIBRATION AND TEST INSTRUMENTATION Before the contractor initiates the dummy performance calibration test program, a test instrumentation calibration system must be implemented and maintained in accordance with established calibration practices. The calibration system shall be set up and maintained as follows: - A. Standards for calibrating the measuring and test equipment shall be stored and used under appropriate environmental conditions to assure their accuracy and stability. - B. All measuring instruments and standards shall be calibrated by the contractor, or a commercial facility, against a higher order standard at periodic intervals not exceeding 6 months for instruments and 12 months for calibration standards. Records, showing the calibration traceability to the National Institute of Standards and Technology (NIST), shall be maintained for all measuring and test equipment. - C. All measuring and test equipment and measuring standards shall be labeled with the following information: - (1) Date of calibration - (2) Date of next scheduled calibration - (3) Name of the technician who calibrated the equipment - D. The contractor shall provide a written calibration procedure that includes, as a minimum, the following information for all measurement and test equipment: - (1) Type of equipment, manufacturer, model number, etc. - (2) Measurement range - (3) Accuracy - (4) Calibration interval - (5) Type of standard used to calibrate the equipment (calibration traceability of the standard must be evident) - (6) The actual procedures and forms used to perform calibrations. - E. The contractor shall keep records of calibrations for all test instrumentation in a manner that assures the maintenance of established calibration schedules. All such records shall be readily available for inspection when requested by the COTR. The calibration system will need the written acceptance of the COTR before testing begins. - F. Test equipment shall receive a calibration check immediately prior to and after each test. This check shall be recorded by the test technician(s) and submitted with the final report. - G. Anthropomorphic test devices shall be calibrated before and verify the calibration after each crash or low risk
deployment test. These calibrations shall be submitted with the final report. #### 9. PHOTOGRAPHIC DOCUMENTATION Provide still photographs (8 x 10 inch glossy color prints properly focused for clear images) of post test damage resulting from the vehicle crash or low risk deployment test. #### 10. DEFINITIONS PADI: Procedures for Assembly, Disassembly, and Inspection #### 11. PRETEST REQUIREMENTS #### 11.1 TRANSDUCER REQUIREMENTS The contractor shall provide and install the following instrumentation to the GFP dummies (excluding the chest deflection transducer). A. HEAD – The head accelerometers shall have dimensions, response characteristics and sensitive mass locations specified in drawing SA572-S4 and be mounted in the head as shown in drawing 127-0000 sheet 3. (572.127(c)) Three accelerometers shall be mounted in the head cavity to measure orthogonal accelerations (Ax, Ay, Az) at the center of gravity (CG) of the head assembly. - B. NECK The upper neck force transducer shall have the dimensions, response characteristics, and sensitive axis locations specified in drawing SA572-S11 and shall be mounted in the head neck assembly as shown in drawing 127-0000, sheet 3. (572.127(d)) - C. CHEST The chest accelerometers shall have the dimensions, response characteristics, and sensitive mass locations specified in drawing SA572-S4 and be mounted in the torso assembly in triaxial configuration at T4 as shown in drawing 127-0000 sheet 3. The chest accelerometers are not required for dummy calibration testing but are required for FMVSS 208 low risk deployment testing. (572.126(e)) The chest deflection transducer shall have the dimensions and response characteristics specified in drawing SA572-S50 and be mounted to the upper torso assembly as shown in drawing 127-0000 sheet 3. (572.137(f)) - D. LEGS -- The single axis femur force transducer shall have the dimensions, response characteristics, and sensitive axis locations specified in drawing SA572-S10 and be mounted in the leg as shown in drawing 127-0000 sheet 3. The femur transducers are not required for calibration of the dummy but are required for FMVSS 208 testing. (572.137(j)) - E. TEST FIXTURE The neck pendulum, thorax and knee probe accelerometers shall have the dimensions and characteristics of drawing SA572-S4. #### 11.2 OTHER TRANSDUCER CONDITIONS A. TRANSDUCER MOUNTS – The mountings for sensing devices shall have no resonance frequency less than 3 times the frequency range of the applicable channel class. (572.127(m)) - B. TRANSDUCER SIGN CONVENTION The sign convention for outputs of transducers mounted within the dummy that measure head and chest accelerations, chest deflection and femur loads are located in Figure 1C. For other transducers see SAE J1733DEC94. (572.127(I)) - C. TRANSDUCER OUTPUT FILTERING The outputs of acceleration and force-sensing devices installed in the dummy and in the test apparatus specified by this part are recorded with individual data channels. Each data channel will be comprised of a sensor, signal conditioner, data acquisition device, and all interconnecting cables, and must conform to the requirements of SAE Recommended Practice J211/1 MAR95, "Instrumentation for Impact Test," with channel classes as follows: (572.127(k)) | (1) Head acceleration(2) Neck force(3) Neck pendulum acceleration | Class 1000 (572.127(k)(1))
Class 1000 (572.127(k)(2)(i))
Class 180 (572.127(k)(2)(iii)) | |---|---| | (4) Neck moment transducers | Class 600 (572.127(k)(2)(ii)) | | (5) Thorax and thorax pendulum acceleration | Class 180 (572.127(k)(3)(ii)) | | (6) Sternum deflection | Class 600 (572.127(k)(3)(iii)) | | (7) Knee pendulum acceleration | Class 600 | | (8) Femur force | Class 600 (572.127(k)(6)) | | (9) Torso flexion | Class 60 | All filter classes should be of the "phaseless" type to be compatible with the "time" dependent test parameters. #### 11.3 THORAX IMPACTOR PROBE (572.127(a)) - A. The test probe for thoracic impacts shall be of rigid metallic construction, concentric about its longitudinal axis. - B. It shall have a mass of 2.86 ± 0.02 kg (6.3 ± 0.05 lbs). 1/3 of the weight of the suspension cables and any attachments to the impact probe must be included in the calculation of mass, and such components may not exceed 5 percent of the total weight of the test probe. - C. It shall have a minimum mass moment of inertia of 160 kg-cm² (0.141 lbs-in-sec²) in yaw and pitch about the center of gravity. - D. The impacting end of the probe is perpendicular to and concentric with the longitudinal axis. It must have a flat, continuous, and non-deformable face with diameter of 101.6 \pm 0.25 mm (4.00 \pm 0.01 in) and a edge radius of 7.6-12.7 mm (0.3-0.5 in). - E. The impactor is a cylinder with a diameter of 101-103 mm (4.0-4.1 in) and it is at least 12.5 mm (0.5 in) long. - F. The probe's end opposite to the impact face must have provisions for mounting of an accelerometer with its sensitive axis collinear with the longitudinal axis of the probe. - G. The impact probe shall have a free air resonant frequency of not less than 1000 Hz in the direction of the longitudinal direction of the impactor.. #### 11.4 KNEE IMPACTOR PROBE (572.127(b)) - A. The test probe for knee impacts shall be of rigid metallic construction, concentric in shape and symmetric about is longitudinal axis. - B. It shall have a mass of 0.82 ± 0.02 kg (1.8 ± 0.05 lbs). 1/3 of the weight of the suspension cables and any attachments to the impact probe must be included in the calculation of mass, and such components may not exceed 5 percent of the total weight of the test probe. - C. It shall have a minimum mass moment of inertia of 34 kg-cm² (0.03 lbs-in-sec²) in yaw and pitch about the center of gravity. - D. The impacting end of the probe is perpendicular to and concentric with the longitudinal axis. It must have a flat, continuous, and non-deformable face with diameter of 76.2 ± 0.2 mm (3.00 ± 0.01 in) and a maximum edge radius of 7.6-12.7 mm (0.3-0.5 in). - E. The impactor is a cylinder with a diameter of 76-77 mm (3.0-3.1 in) and it is at least 12.5 mm (0.5 in) long. - F. The probe's end opposite to the impact face must have provisions for mounting of an accelerometer with its sensitive axis collinear with the longitudinal axis of the probe. - G. The impact probe shall have a free air resonant frequency of not less than 1000 Hz in the direction of the longitudinal direction of the impactor. # SIGN CONVENTION FOR PART 572 TEST DUMMIES **TABLE 1C** | SIGN CONVENTION FOR HYBRID III TRANSDUCER OUTPUTS | | | |--|--|--| | BODY SEGMENT —
MEASURED FORCE | POSITIVE OUTPUT DIRECTION | | | NECK
FX SHEAR
FY SHEAR
FZ AXIAL | HEAD REARWARD OR CHEST FORWARD
HEAD LEFTWARD, CHEST RIGHTWARD
HEAD UPWARD, CHEST DOWNWARD | | | MX MOMENT (ROLL) MY MOMENT (PITCH) MZ MOMENT (YAW) | LEFT EAR TOWARD LEFT SHOULDER
CHIN TOWARD STERNUM
CHIN TOWARD LEFT SHOULDER | | | FEMUR
FX SHEAR
FY SHEAR
FZ AXIAL | KNEE UPWARD, UPPER FEMUR DOWNWARD
KNEE RIGHTWARD, UPPER FEMUR LEFTWARD
KNEE FORWARD (TENSION), PELVIS REARWARD | | | MX MOMENT (ROLL)
MY MOMENT (PITCH)
MZ MOMENT (YAW) | KNEE LEFTWARD, HOLD UPPER FEMUR IN PLACE
KNEE UPWARD, HOLD UPPER FEMUR IN PLACE
KNEE ROTATED CCW WHEN FACING FRONT OF
DUMMY | | | KNEE CLEVIS - FZ AXIAL | TIBIA DOWNWARD (TENSION), FEMUR UPWARD | | | UPPER TIBIA
MX MOMENT
MY MOMENT | ANKLE LEFTWARD, HOLD KNEE IN PLACE
ANKLE FORWARD, BOTTOM OF KNEE CLEVIS
REARWARD | | | LOWER TIBIA
FX SHEAR
FY SHEAR
FZ AXIAL | ANKLE FORWARD, KNEE REARWARD
ANKLE RIGHTWARD, KNEE LEFTWARD
ANKLE DOWNWARD (TENSION), KNEE UPWARD | | | MX MOMENT
MY MOMENT | ANKLE LEFTWARD, HOLD KNEE IN PLACE
ANKLE FORWARD, BOTTOM OF KNEE CLEVIS
REARWARD | | | CHEST DISPLACEMENT | CHEST COMPRESSED - NEGATIVE | | | KNEE SHEAR DISPLACEMENT | PUSH ON FRONT OF TIBIA - NEGATIVE | | NOTE: DIRECTIONS ARE DEFINED IN RELATION TO A SEATED DUMMY #### 11.5 GENERAL TEST CONDITIONS - A. Surfaces of dummy components are not painted unless otherwise specified. (572.127(p)) - B. Dummy performance tests of the same component, segment, assembly, or fully assembled dummy are separated in time by a period of not less than 30 minutes unless otherwise specified. (572.127(o)) - C. Except for neck assembly and thorax assembly testing, the dummy performance tests are conducted at any temperature from 18.9°C (66°F) to 25.6°C (78°F) and at any relative humidity from 10% to 70% after exposure of the dummy to these conditions for a period of not less than 4 hours. For the neck assembly and thorax assembly, the temperature range is 20.6°C (69°F) to 22.2°C (72°F) - D. Dummy limb joints are set at 1 G, barely restraining the weight of the limb when it is extended horizontally. The force required to move a limb segment does not exceed 2 Gs throughout the range of limb motion. (572.127(n)) - E. Dummies will be clothed for the thorax calibration tests with a cotton stretch above-the-elbow sleeved shirt and above-the-knee pants. (572.124(c)(2)) #### 12. CALIBRATION TEST EXECUTION Complete the Data Sheets in section 15. #### 13. POST TEST REQUIREMENTS The contractor shall verify all instrumentation and check data sheets and photographs. Make sure data is recorded in all data blocks on every performance calibration test data sheet. #### 14. REPORTS #### 14.1 APPARENT NONCONFORMANCE During the post test calibration verification, any indication of apparent nonconformance to the requirements of Regulation P572 shall be communicated by
telephone to the COTR within 24 hours with written notification mailed within 48 hours (Saturdays and Sundays excluded). Written notification shall be submitted with a copy of the particular test data sheet(s) and preliminary data plot(s). In the event of an apparent nonconformance, a post test calibration check of some critically sensitive test equipment and instrumentation may be required for verification of accuracy. The necessity for the calibration shall be at the COTR's discretion and shall be performed without additional costs to the OVSC. #### 14.2 FINAL PERFORMANCE CALIBRATION REPORTS #### 14.2.1 COPIES A report containing the pre-test calibration and post test calibration verification data for each Part 572, Subpart N dummy used in the vehicle compliance test shall be submitted with FMVSS 208 final test report for the vehicle tested. Contractors are required to PROOF READ all Final Test Reports before submittal to the COTR. The OVSC will not act as a report quality control office for contractors. Reports containing a significant number of errors will be returned to the contractor for correction, and a "hold" will be placed on invoice payment for the particular test. #### 14.2.2 REQUIREMENTS Performance calibration report Table of Contents shall include the following: - A. Section 1 Purpose of Calibration Test - B. Section 2 Calibration Data Summary - C. Section 3 Test Data - D. Section 4 Test Equipment List and Calibration Information - E. Section 5 Photographs (if applicable) The test data for each dummy will be presented in separate sections. Each section shall contain a title page, test results summary and the test data. The title page shall include the dummy's serial number and he manufacturer's name. It will also indicate whether the calibration data is pre or post test. The test results sheets will provide a summary of each test and describe any damage, failures and/or corrective action taken. The test data shall include the pass/fail data sheets, the time histories for each data channel used to determine the pass or fail status, and instrumentation calibration data sheets. #### 14.2.3 FIRST PAGE #### FRONT COVER A heavy paperback cover (or transparency) shall be provided for the protection of the final report. The information required on the cover is as follows: A. Final Report Title And Subtitle such as DUMMY PERFORMANCE CALIBRATION IN SUPPORT OF VEHICLE SAFETY COMPLIANCE TESTING FOR OCCUPANT CRASH PROTECTION B. Contractor's Name and Address such as ABC TESTING LABORATORIES, INC. 405 Main Street Detroit, Michigan 48070 NOTE: DOT SYMBOL WILL BE PLACED BETWEEN ITEMS B AND C - C. Date of Final Performance Calibration Report completion - D. The sponsoring agency's name and address as follows U. S. DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration Enforcement Office of Vehicle Safety Compliance 400 Seventh Street, SW Room 6111 (NVS-220) Washington, DC 20590 ## 15. Data Sheets ## DATA SHEET C1 DUMMY DAMAGE CHECKLIST | Dummy Serial Number | Test Date | |--|-------------------------------------| | Technician | | | This check sheet is completed as part of the p | oost test calibration verification. | | Perform general cleaning. | | | Dummy Item | Inspect for | Comments | Damaged | OK | |--------------|----------------------|----------|---------|----| | Outer skin | Gashes, rips, cracks | | | | | Head | Ballast secure | | | | | | General appearance | | | | | Neck | Broken or cracked | | | | | | rubber | | | | | | Upper neck bracket | | | | | | firmly attached to | | | | | | the lower neck | | | | | | bracket | | | | | | Looseness at the | | | | | | condyle joint | | | | | | Nodding blocks | | | | | | cracked or out of | | | | | | position | | | | | Spine | Broken or cracks in | | | | | | rubber. | | | | | Ribs | Broken or bent ribs | | | | | | Broken or bent rib | | | | | | supports | | | | | | Damping material | | | | | | separated or | | | | | | cracked | | | | | | Rubber bumpers in | | | | | | place | | | | | Chest | Bent shaft | | | | | Displacement | | | | | | Assembly | | | | | | | Slider arm riding in | | | | | | track | | | | | Abdomen | Proper positioning | | | | | Transducer | Torn cables | | | | | leads | | | | | | Accelerometer Mountings secure Chest mounting secure Knees Skin condition Insert (do not remove) Casting Limbs Normal movement and adjustment Knee Sliders Wires intact Rubber returned to "at rest" position Pelvis Broken Other If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Checked by Checked by | ummy Item | Inspect for | Comments | Damaged | OK | |--|--------------|------------------------|-------------|---------|----| | Chest mounting secure Knees Skin condition Insert (do not remove) Casting Limbs Normal movement and adjustment Knee Sliders Wires intact Rubber returned to "at rest" position Pelvis Broken Other If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date | ccelerometer | Head mounting | | | | | Secure Skin condition Insert (do not remove) Casting Imbs Normal movement and adjustment Knee Sliders Wires intact Rubber returned to "at rest" position Pelvis Broken Other If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | ountings | secure | | | | | Insert (do not remove) Casting Limbs Normal movement and adjustment Gnee Sliders Wires intact Rubber returned to "at rest" position If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date | | Chest mounting | | | | | Insert (do not remove) Casting Imbs Normal movement and adjustment Cnee Sliders Wires intact Rubber returned to "at rest" position Pelvis Broken Other If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | | | | | | | remove) Casting Castin | nees | Skin condition | | | | | imbs Normal movement and adjustment Rubber returned to "at rest" position Pelvis Broken If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | | Insert (do not | | | | | imbs Normal movement and adjustment | | remove) | | | | | and adjustment (Inee Sliders Wires intact Rubber returned to "at rest" position Pelvis Broken If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date | | Casting | | | | | Rubber returned to "at rest" position Pelvis Broken If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Da | mbs | Normal movement | | | | | Rubber returned to "at rest" position
Pelvis Broken If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | | and adjustment | | | | | "at rest" position Pelvis Broken Other If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | nee Sliders | Wires intact | | | | | Pelvis Broken Other If upon visual examination, damage is apparent in any of these areas, the appropriate engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | | Rubber returned to | | | | | If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | | "at rest" position | | | | | If upon visual examination, damage is apparent in any of these areas, the appropriat engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | elvis | Broken | | | | | engineer or engineering technician is to be consulted for a decision on repair or replacement of parts. Repair or Replacement approved by: Signature Date Describe the repair or replacement of parts: | ther | | | | | | Describe the repair or replacement of parts: | | | | | | | | Signature | | Date | | | | Checked by | Describe th | e repair or replacemen | t of parts: | | | | Signature Date | | / | | | | ## DATA SHEET C2 EXTERNAL MEASUREMENTS (See the PADI, pages 57-59, 66-67) | Dumm | ny Serial Number Test Date | |----------------|---| | Techn | ician | | | test calibration
of test calibration verification | | 1.
2.
3. | Remove the dummy's chest jacket and the abdominal insert. Seat the dummy on a flat, rigid, smooth, clean, dry, horizontal surface as shown in Figure 3C and 4C. The seating surface is at least 215.9 mm (8.5 in) wide and 330.2 mm (13 in) in depth with a vertical section at least 215.9 mm (8.5 in) wide and 635 mm (25 in) high attached to the rear of the seating fixture. The dummy's midsagittal plane is vertical and centered on the test surface. Remove the four ½-20 x 7/8 SHCS that attach the lumbar spine bracket to the pelvis. Torque the spine cable to 0.22 \pm .02 NM (2.0 \pm 0.2 in-lbs). | | | NOTE: At this point the thorax is to be inspected for damage. The thorax displacement transducer may be removed for calibration if required (pretest calibration only). Extreme caution to be used so as not to damage the instrumentation cables. | | 4.
5. | Reassemble the lumbar spine bracket to the pelvis. Secure the dummy to the test fixture so that the rear surfaces of the upper thorax and the buttock are tangent to the rear vertical surface of the fixture. (or as near | | 6. | tangent as possible). The dummy's midsagittal plane should be vertical. Position the dummy's H-point so it is 68.6 ± 5.1 mm $(2.7 \pm 0.2 \text{ in})$ above the horizontal seating surface and 94.0 ± 5.1 mm $(3.7 \pm 0.2 \text{ in})$ forward of the rear vertical surface of the fixture. The H-point is located 34.5 mm (1.36 in) forward | | 7. | and 48.7 mm (1.92 in) downward from the center pelvic angle reference hole. Extend the dummy's neck so that the plane perpendicular to the skull to skullcap interface is level both fore-and-aft and side-to-side, within 0.5 degrees. (The vertical mating surface between the skull and skull cap will be vertical.) The rear surface of the skullcap should be 20.3 ± 2.5 mm (0.8 ± 0.1 in) from the vertical surface of the test fixture. A strap or bungee cord may be placed around the | | 8. | forehead of the dummy to stabilize the head in this position. Position the upper and lower legs parallel to the midsagittal plane so the knee and ankle pivots centerlines are parallel, forming a 90° angle between the tibia and femur. | | 9. | Position the feet parallel to the dummy's midsagittal plane with the bottoms | | 10. | horizontal and parallel to the seating surface. Position the upper arms downward vertically so the centerlines of the shoulder yoke and elbow pivots are parallel. | | are parallel. 12. Record the dimensions lists (reference figure 2C). 13. Install the abdominal insert fixture. The head need not | rizontally so the centerline of the elbow and wrist pivot ed in following table, except for dimension Y and Z and chest jacket. Reposition the dummy on the test be level as previously specified. BB, and record the dimensions Y, Z, as specified in C. | |--|---| | Signature |
Date | ## **EXTERNAL DIMENSIONS** | HYBRID III, PA | HYBRID III, PART 572, SUBPART N EXTERNAL DIMENSIONS | | | | |----------------|---|--|-------------------------------|-----------------------| | DIMENSION | DESCRIPTION | DETAILS | ASSEMBLY
DIMENSION
(mm) | ACTUAL
MEASUREMENT | | Α | TOTAL SITTING HEIGHT | Seat surface to highest point on top of the head. | 622.3 - 647.7 | | | В | SHOULDER PIVOT
HEIGHT | Centerline of shoulder pivot bolt to the seat surface. | 348.0 - 363.2 | | | С | H-POINT HEIGHT | Reference | 63.5 - 73.7 | | | D | H-POINT LOCATION FROM BACKLINE | Reference | 88.9 - 99.1 | | | Е | SHOULDER PIVOT FROM BACKLINE | Center of the shoulder clevis to the rear vertical surface of the fixture. | 53.3 - 63.5 | | | F | THIGH CLEARANCE | Measured at the highest point on the upper femur segment. | 88.9 - 104.1 | | | G | BACK OF ELBOW TO WRIST PIVOT | back of the elbow flesh to the wrist pivot in line with the elbow and wrist pivots | 182.9 - 198.1 | | | Н | HEAD BACK TO BACKLINE | Back of Skull cap skin to seat rear vertical surface (Reference) | 17.8 - 22.8 | | | I | SHOULDER TO- ELBOW
LENGTH | Measure from the highest point on top of the broad upper surface of clavicle link below the collar ot the lowest part of the flesh of the elbow in line with the elbow pivot bolt. | 215.9 - 231.1 | | | J | ELBOW REST HEIGHT | Measure from the flesh below the elbow pivot bolt to the seat surface. | 157.4 - 177.8 | | | К | BUTTOCK TO KNEE
LENGTH | The forward most part of the knee flesh to the rear vertical surface of the fixture. | 370.8 - 391.2 | | | L | POPLITEAL HEIGHT | Seat surface to the horizontal plane at the bottom of the feet. | 269.2 - 289.6 | | | М | KNEE PIVOT HEIGHT | Centerline of knee pivot bolt to the horizontal plane of the bottom of the feet. | 307.4 - 322.6 | | | HYBRID III, SI | JBPART N EXTERNAL DIMEN | SIONS, continued | | | |----------------|---|--|-------------------------------|-----------------------| | DIMENSION | DESCRIPTION | DETAILS | ASSEMBLY
DIMENSION
(mm) | ACTUAL
MEASUREMENT | | N | BUTTOCK POPLITEAL
LENGTH | The rearmost surface of the lower leg to the same point on the rear surface of the buttocks used for dim. "K". | 320.0 - 340.4 | | | 0 | CHEST DEPTH WITHOUT JACKET | Measured 330.2 ± 5.1 mm above seat surface | 129.6 - 144.8 | | | Р | FOOT LENGTH | Tip of toe to rear of heal | 170.2 - 185.4 | | | Q | STATURE | (THEORETICAL) (Q = A - C - D + R + M) | 1099.9 - 1181.1 | N/A | | R | BUTTOCK TO KNEE PIVOT LENGTH | The rear surface of the buttocks to the knee pivot bolt | 342.9 - 363.3 | | | S | HEAD BREADTH | The widest part of the head | 137.1 - 147.3 | | | Т | HEAD DEPTH | Back of the head to the forehead | 167.6 - 177.8 | | | U | HIP BREADTH | The widest part of the hips | 208.3 - 223.5 | | | V | SHOULDER BREADTH | Outside shoulder edges, in line with the shoulder pivot bolts | 259.1 - 274.3 | | | W | FOOT BREADTH | The widest part of the foot | 62.3 - 77.5 | | | Х | HEAD CIRCUMFERENCE | Measured at the point as in dim. "T" | 510.5 - 530.9 | | | Υ | CHEST CIRCUMFERENCE (WITH CHEST JACKET) | Measured 3330.2 ± 5.1 mm above seat surface | 596.9 - 622.3 | | | Z | WAIST CIRCUMFERENCE (with chest jacket and abdominal insert) | Measured 158.8 ± 5.1 mm above seat surface | 558.8 - 584.2 | | | AA | REFERENCE LOCATION
FOR MEASUREMENT OF
CHEST CIRCUMFERENCE | Reference | 325.1 - 335.3 | | | ВВ | REFERENCE LOCATION
FOR MEASUREMENT OF
WAIST
CIRCUMFERENCE | Reference | 153.7 - 163.9 | | ## **EXTERNAL DIMENSION SPECIFICATIONS** ## FIGURE 2C ## **EXTERNAL DIMENSIONS TEST SETUP** FIGURE 3C ## **EXTERNAL DIMENSIONS TEST SETUP** ## DATA SHEET C3 HEAD DROP TEST (572.122) | Dumn | ny Serial Number Test Date | |----------|--| | Techr | nician | | | etest calibration
st test calibration verification | | Test a | attempt no (when successive head drops are necessary) | | 1.
2. | It has been at least 2 hours since the last head drop. (572.122(c)(5)) N/A, ONLY one head drop performed The head assembly consists of the complete head (127-1000), a six-axis neck | | ∠. | transducer (SA572-S11) or its structural replacement (78051-383X), a head to neck pivot pin (78051-339), and three (3) accelerometers (SA572-S4). (572.122(a)) | | 3. | Torque the skull cap screws (10-32 x 1/2 SHCS) to 10.2 Nm. | | 4.
5. | Accelerometers and their respective mounts are smooth and clean. The head accelerometer mounting plate screws ((10-24 x 3/8 SHCS) are torqued to 9.0 Nm. | | 6. | The data acquisition system, including transducers, conforms to the requirements of SAE Recommended Practice J211/1 MAR95. (572.126(m)) | | 7. | The head assembly soaked at a temperature between 18.9°C (66°F) and 25.6°C (78°F) and at a relative humidity from 10% to 70% for a period of at least four (4) hours prior to a test. (572.122(c)(1)) Record the maximum temperature Record the minimum temperature Record the maximum humidity Record the minimum humidity | | 8. | Visually inspect the head skin for cracks, cuts, abrasions, etc. Repair or replace the head skin if the damaged area is more than superficial. Note: If the damage resulted from the vehicle crash test in which the dummy was an occupant, the damaged area is to be documented with photography and the post test calibration verification testing completed before any replacement or repairs are made. Record findings and actions: | | 9. | Clean the impact surface of the skin and the impact surface of the fixture with isopropyl alcohol, trichloroethane or equivalent prior to the test. (572.122(c)(2)) | | Signature | | Date | | | |--|---|-------------------------------------|-----------|--| | | | | | | | 17. Plots of the x, y, z, and resultant acceleration data follow this sheet. | | | | | | | Lateral acceleration | y-axis acceleration ≤ 15 g | | | | | | resultant acceleration | | | | | Oscillations after the main pulse | Less than 10% of the peak | | | | | Resultant versus time history curve | Unimodal | | | | ŀ | Peak resultant acceleration | 245 g ≤ x ≤ 300 g | racouit | | | ſ | Parameter | Specification | Result | | | 16. | 6. Complete the following table using channel class 1000 data. (572.122(b)): | | | | | | surface. (572.122(b) & (572.122(c)(4)) | | - | | | 10. | 0.04 inches) by a means that ensures a | | | | | 15 | Record length Drop the head assembly from a height of 376.0 ± 1.0 mm (14.8 inches ± | | | | | | Record length | | | | | | Record thickness | | | | | | 610 mm (24 inches) square. (572.122(d | c)(4)) | | | | | The impact surface is a flat horizontal s | teel plate 50.8 mm (2 inches) thi | ck and | | | 13. | The impact surface is rigidly supported | . (572.122(c)(4)) | | | | | (572.122(c)(4)) Record actual micro finish | | | | | | 203.2x10 ⁻⁶ mm (8 micro inches) to 203 | 2.0x10 ° mm (80 micro inches) (F | KMS). | | | 12. | The impact surface is clean and dry an | d has a micro finish in the range | of | | | | Record the left side distance | | | | | | Record the right side distance | | | | | | is shown in Figure 5C. (572.122(c)(3)) | in the impact surface. A typical ti | ooi oolup | | | 11. | 11. The 1.57 mm (0.062 inch) diameter holes located on either side of the dummy's head are equidistance within 2 mm from the impact surface. A typical test setup | | | | | 4.4 | | | | | | | NOTE: The masses of the susp cables are to be kept as lightwei the test results. | | | | | | | | | | | | (572.122(c)(3)) Record the actual distance | | | | | | on the forehead is 376.0 ± 1.0 mm (14. | 8±0.04 inch) from the impact sur | face. | | | 10. | 10. Suspend and orient the head assembly as shown in Figure 5C. The lowest point | | | | ## **HEAD DROP TEST SET-UP SPECIFICATIONS** FIGURE 5C ## DATA SHEET C4 NECK FLEXION TEST (572.123) | Dummy Serial Number lest Date | | | | |-------------------------------|---|--|--| | Techn | iician | | | | | test calibration
st test calibration verification | | | | Test a | ttempt no (when successive flexion tests are necessary) | | | | 1. | It has been at least 30 minutes since the last neck test. (572.127(o)) N/A, ONLY one flexion test performed | | | | 2. | The components required for the neck tests include the head assembly (127-1000), neck (127-1015), pivot pin (78051-339), bib simulator (TE127-1025), neck bracket assembly (127-8221), six axis neck transducer (SA572-S11), neck mounting adaptor (TE-2208-001) and three accelerometers (SA572-S4) installed in the head assembly as specified in S572.122. Data from the accelerometers are not required. (572.123(b)) | | | | 3. | The assembly soaked at a temperature between 20.6°C (69°F) and 22.2°C (72°F) and at a relative humidity from 10% to 70% for a period of at least four (4) hours prior to a test. (572.123(c)(1)) Record the maximum temperature Record the minimum temperature Record the maximum humidity Record the minimum humidity | | | | 4. | Visually inspect neck assembly for cracks, cuts and separation of the rubber from the metal segments. Note: If the damage resulted from the vehicle crash test in which the dummy was an occupant, the damaged area is to be documented with photography and the post test calibration verification testing completed before any replacement or repairs are made. Record findings and actions: | | | | 5. | Inspect the nodding blocks (127-1020, 127-1021) for splits or deformation. Inspect the Neck Cable (127-1016) for deformation. Inspect the mounting plate insert (910420-048) and the nylon shoulder bushing (9001373) and replace if they are torn or worn. When replacement is necessary, ONLY replace during pretest calibration. Record findings and actions: | | | | | | | | | | Torque the jam nut (9000341) on the neck cable (127-1016) to 0.23 ± 0.02 Nm (2.0 + 2.2 in lb) (572.493(a)(b) | | | |--|--|---|--------------------------| | 7. The dat | $(2.0 \pm 0.2 \text{ in-lb})$. $(572.123(c)(2)$
The data acquisition system, including transducers, conforms to the requirements | | | | | | d Practice J211/1 MAR95. (572.127(k)) | 60 | | | : fixture peridu
(3(c)(3)) | lum conforms to the specifications in Figure | 0C. | | | | ably is mounted on the pendulum so the mids | sagittal plane of | | | the head is vertical and coincides with the plane of motion of the pendulum | | | | | longitudinal centerline as shown in Figure 7C for the flexion test. (572.123(c)(3)) | | | | | _10. With the pendulum resting against the honeycomb material, the neck bracket
was adjusted until the longitudinal centerline of the pendulum was perpendicular. | | | | | | " on the dummy's head. | p or p or reconstruction | | | | n and allow it to fall freely from a height to ac | | | | | m/s to 5.07 m/s as measured at the center o | f the pendulum | | | ometer. (572.1
ete the following | | | | 12. 00111pic | | g table. | | | Neck FI | exion Test Res | sults (572.123(b)(1) & (572.123(c)(4)(i & ii) | | | Parameter | | Specification | Result | | Pendulum imp | | 4.83 m/s ≤ speed ≤ 5.07 m/s | | | Pendulum | @ 10ms | 1.2 m/s ≤ Δ V ≤ 1.6 m/s | | | ΔV with respec | | $2.4 \text{ m/s} \leq \Delta V \leq 3.4 \text{ m/s}$ | | | to impact speed | @30ms | $3.8 \text{ m/s} \leq \Delta V \leq 5.0 \text{ m/s}$ | | | Plane D Rotation | | Peak moment* | Nm @ | | | | 27 Nm ≤ moment ≤ 33 Nm during the | degrees | | | | following rotation range 74° ≤ angle ≤ 92° | | | Positive Moment Decay** | | Time to decay to 5 Nm | | | (Flexion) | | 103 ms ≤ time ≤ 123 ms | 100(1)(1)(1) | | | | cipital condyle = $M_y - (0.01778 \text{ m x } F_x)$ (572 | .123(b)(1)(III)) | | My = Moment in Nm measured by the transducer | | | | | Fx = Force, in N measured by the transducer **Time zero is defined as the time of initial contact between the pendulum striker. | | | | | **Time zero is defined as the time of initial contact between the pendulum striker
plate and the honeycomb material. (572.123(b)(3) | | | | | plate and the honeycomb material. (072.120(b)(0) | | | | | 14. Plots of acceleration, velocity, y-axis moment, and x-axis force and y-axis | | | | | moment about the
occipital condyle follow this sheet. | | | | | | | | | | | | | | | Signature | |
Date | | | 2.5 | | 24.0 | | | | | | | ## DATA SHEET C5 NECK EXTENSION TEST (572.123) | Dumn | y Serial Number Test Date | |----------|---| | Techn | cian | | | est calibration
t test calibration verification | | Test a | tempt no (when successive extension tests are necessary) | | 1.
2. | It has been at least 30 minutes since the last neck test. (572.127(o)) N/A, ONLY one extension test performed The components required for the neck tests include the head assembly (127-1000), neck (127-1015), pivot pin (78051-339), bib simulator (TE127-1025), neck bracket assembly (127-8221), six axis neck transducer (SA572-S11), neck mounting adaptor (TE-2208-001) and three accelerometers (SA572-S4) installed in the head assembly as specified in S572.122. Data from the accelerometers | | 3. | are not required. (572.123(b)) The assembly soaked at a temperature between 20.6°C (69°F) and 22.2°C (72°F) and at a relative humidity from 10% to 70% for a period of at least four (4) hours prior to a test. (572.123(c)(1)) Record the maximum temperature Record the minimum temperature Record the maximum humidity Record the minimum humidity | | 4. | Visually inspect neck assembly for cracks, cuts and separation of the rubber from the metal segments. Note: If the damage resulted from the vehicle crash test in which the dummy was an occupant, the damaged area is to be documented with photography and the post test calibration verification testing completed before any replacement or repairs are made. Record findings and actions: | | 5. | Inspect the nodding blocks (127-1020, 127-1021) for splits or deformation. Inspect the Neck Cable (127-1016) for deformation. Inspect the mounting plate insert (910420-048) and the nylon shoulder bushing (9001373) and replace if they are torn or worn. When replacement is necessary, ONLY replace during pretest calibration. Record findings and actions: | | | Torque the jam nut (9000341) on the neck cable (127-1016) to 0.23 ± 0.02 Nm (2.0 + 0.2 in lb) (572.433(a)(2) | | | | |--|--|-----------------------------------|--|-----------------| | | $(2.0 \pm 0.2 \text{ in-lb})$. (572.123(c)(2)
The data acquisition system, including transducers, conforms to the requirements | | | | | | | | Practice J211/1 MAR95. (572.127(k)) | - 4 | | | The test fixture pendulum conforms to the specifications in Figure 6C. | | | | | | 572.123 | | hi da ara atau a dha ara dha ara dha ara dha ara | - ''(- L - L 6 | | | . The head-neck assembly is mounted on the pendulum so the midsagittal plane the head is vertical and coincides with the plane of motion of the pendulum | | | | | | | | as shown in Figure 8C for the extension test. | idulum | | | - | | as shown in rigure oc for the extension test. | | | • | (572.123(c)(3)) 3. With the pendulum resting against the honeycomb material, the neck bracket | | | k bracket | | | was adjusted until the longitudinal centerline of the pendulum was perpendicu | | | | | | _ | • | " on the dummy's head. | | | | 1. Release the pendulum and allow it to fall freely from a height to achieve an | | | | | | | | n/s to 4.42 m/s as measured at the center of t | he pendulum | | | | meter. (572.12
e the following | · / · // | | | 12. 0 | omplet | e tile lollowing | , lable. | | | N | leck Ext | ension Test F | Results (572.123(b)(2) & (572.123(c)(4)(i & ii) | | | Paramet | | | Specification | Result | | | | ct speed | 4.18 m/s ≤ speed ≤ 4.42 m/s | | | Pendulu | m | @ 10ms | $1.0 \text{ m/s} \le \Delta V \le 1.4 \text{ m/s}$ | | | ΔV with | Ī | @ 20 ms | $2.2 \text{ m/s} \le \Delta V \le 3.0 \text{ m/s}$ | | | respect to @30ms | | @30ms | $3.2 \text{ m/s} \leq \Delta V \leq 4.2 \text{ m/s}$ | | | impact speed Plane D Rotation | | ın | Peak moment* | Nm @ | | i lanc b | Notatio | ''' | -24 Nm ≤ moment ≤ -19 Nm during the | degrees | | | | | following rotation range $85^{\circ} \le \text{angle} \le 103^{\circ}$ | aag.aaa | | | | | Time to decay to -5 Nm | | | (Extension) | | , | 123 ms ≤ time ≤ 147 ms | | | * | Moment | about the oc | cipital condyle = $M_y - (0.01778 \text{ m x } F_x) (572.1)$ | 23(b)(2)(iii) | | | | • | in Nm measured by the transducer | | | Fx = Force, in N measured by the transducer | | | | | | **Time zero is defined as the time of initial contact between the pendulum striker | | | | | | plate and the honeycomb material. (572.123(b)(3) | | | | | | 14 P | 14 Plots of acceleration, velocity, y-axis moment, and x-axis force and y-axis | | | | | | moment about the occipital condyle follow this sheet. | | | | | | | | | | |
Signatur | <u>~</u> | |
Date | | | Signatur | • | | Dato | | | | | | | | #### PENDULUM SPECIFICATIONS #### FIGURE 6C ## **NECK FLEXION TEST SET-UP SPECIFICATIONS** FIGURE 7C ## NECK EXTENSION TEST SET-UP SPECIFICATIONS #### FIGURE 8C ## DATA SHEET C6 THORAX IMPACT TEST (572.134) | Dumn | mmy Serial Number | Test Date | |--------|---|---| | Techr | chnician | | | | Pretest calibration Post test calibration verification | | | Test a | st attempt no (when successive thorax | impact tests are necessary) | | 1234. | N/A, ONLY one thorax impact test per The test fixture conforms to the specifical The complete assembled dummy (127-00 The dummy assembly soaked at a temper 22.2°C (72°F) and at a relative humidity frour (4) hours prior to this test. (572.134(descord the maximum temperature Record the minimum temperature Record the minimum humidity Record the minimum humidity Remove the chest skin and visually insperators displacement transducer assembly rib deformation using the chest depth gag replace the damaged components unless crash test in which the dummy was an or be documented and post test calibration. | formed ions in Figure 11C. 2000) is used (572.124(b)). Frature between 20.6°C (69°F) and from 10% to 70% for a period of at least c)(1)) The control of damage resulted from the vehicle cupant in which case the damage must | | | repairs or replacements are made No damage Damage from crash test, no repairs of test calibration verification. Record damage The following repairs or replacement. | ige | | | | | | 6. | The dummy is dressed in a size 4 pair of
0.090 kg (0.2 lb) with the legs cut off suffit
target to be visible. (572.124(c)(2)) | | | 7. | | ne surface must be long enough to | | 8. | Level the ribs both longitudinally and laterally ± 0.5° and adjust the pelvis angle to | |-----
--| | | 8° ± 2°. The angle may be measured at the pelvis lumbar joining surface. | | 9. | The midsagittal plane of the dummy is vertical within ± 1°. (572.124(c)(3)) | | 10. | The longitudinal centerline of the test probe is centered within ±2.5 mm of the | | | midsagittal plane of the dummy and is 12.7 mm ± 1mm below the horizontal | | | peripheral centerline of the No. 3 rib and is within 0.5° of a horizontal line in the | | | dummy's midsagittal plane. (572.124(c)(3)) | | 11. | Record locations such as the rear surfaces of the thoracic spine and the lower | | | neck bracket reference with respect to locations such as the rear surfaces of the | | | thoracic spine and the lower neck bracket. These reference measurements are | | | necessary to ensure the dummy is in the same position after the chest skin is | | | installed. The reference locations must be accessible after installation of the | | | chest skin. It may be necessary to leave the chest skin zipper unfastened until | | | the references are checked and fasten it just prior to the test. | | 12. | and the control of th | | 40 | paragraph using the reference measurements recorded. | | | The dummy is dressed in a tight-fitting size 5 short sleeve shirt. (572.124(c)(2)) | | 14. | Place the arm assemblies horizontal ± 2° and parallel to the midsagittal plane. | | | The arms are held in place by tightening the adjustment nut which holds the arm | | 15 | yoke to the clavicle assembly. | | 15. | The data acquisition system, including transducers, must conform to the requirements of SAE Recommended Practice J211/1 MAR95 (572.127(k)) | | 16 | Impact the anterior surface of the thorax with the test probe so the longitudinal | | 10. | centerline of the probe is within 2° of a horizontal line in the dummy's midsagittal | | | plane at the moment of impact. (572.124(c)(4)) The velocity of the test probe at | | | the time of impact is 6.71 m/s \pm 0.12m/s. (572.124(b)) The probe is guided so | | | there is no significant lateral, vertical or rotational movement during the impact. | | | (572.124(c)(5) Neither the suspension hardware, suspension cables, nor other | | | attachments to the probe, including the velocity vane, make contact with the | | | dummy. (572.124(c)(6) | | | | | 17. | Complete | the | following | table: | |-----|----------|-----|-----------|--------| | | | | | | Thorax Impact Results (572.124(b) and 572.124(b)(1)&(2) | Specification | Result | |---------------------------------|---| | 6.59 m/s ≤ speed ≤ 6.83 m/s | | | 38.0 mm ≤ compression ≤ 46.0 mm | | | 1150N ≤ peak force ≤ 1380N | | | | | | | | | Max. 1.05 times the peak force | | | between 38.0 and 46.0 mm chest | | | compression | | | 65% ≤ hysteresis ≤ 85% | | | | 6.59 m/s ≤ speed ≤ 6.83 m/s 38.0 mm ≤ compression ≤ 46.0 mm 1150N ≤ peak force ≤ 1380N Max. 1.05 times the peak force between 38.0 and 46.0 mm chest compression | ^{*}Time zero is defined as the time of initial contact between the test probe and the chest skin. | 18. Plots of chest compression, ac sheet. | cceleration, force, force versus deflection follo | ow this | |---|---|---------| | | | | | Signature | Date | | ^{**}Force = impactor mass x acceleration ^{***}Area under loading curve minus the area under the unloading curve divided by the area under the loading curve. (Figure 10C) # THORAX IMPACT TEST SET-UP SPECIFICATIONS ROBE SUPPORT CABLES - * 1/3 CABLE WEIGHT NOT TO EXCEED 5 % OF THE TOTAL IMPACT PROBE WEIGHT - ** PELVIS LUMBAR JOINING SURFACE ## Probe specifications: - 1. Rigid metallic construction, concentric about its longitudinal axis. - 2. A mass of 2.86 ± 0.02 kg (6.3 ± 0.05 lbs). 1/3 of the weight of the suspension cables and any attachments to the impact probe are included in the calculation of mass, and such components may not exceed 5 percent of the total weight of the test probe. - 3. Minimum mass moment of inertia of 160 kg-cm² (0.141 lbs-in-sec²) in yaw and pitch about the center of gravity. - 4. The impacting end of the probe is perpendicular to and concentric with the longitudinal axis. It has a flat, continuous, and non-deformable face with diameter of 101.6 \pm 0.25 mm (4.00 \pm 0.01 in) and a edge radius of 7.6-12.7 mm (0.3-0.5 in). - 5. The impactor is a cylinder with a diameter of 101-103 mm (4.0-4.1 in) and it is at least 12.5 mm (0.5 in) long. - 6. The probe's end opposite to the impact face must have provisions for mounting of an accelerometer with its sensitive axis collinear with the longitudinal axis of the probe. - 7. The impact probe shall have a free air resonant frequency of not less than 1000 Hz in the direction of the longitudinal direction of the impactor. #### **FIGURE 9C** FIGURE 10C # DATA SHEET C7 TORSO FLEXION TEST (572.125) | Dumn | ny Serial Number Test Date | |------------|--| | Techn | nician | | Pre | test calibration | | | st test calibration verification | | Toot | attempt no (when successive torse flexion tests are necessary) | | 1651 6 | attempt no (when successive torso flexion tests are necessary) | | 1. | It has been at least 30 minutes since the last torso flexion test. (572.127(o)) N/A, ONLY one torso flexion test performed | | 2. | The test fixture conforms to the specifications in Figure 11C. | | <u>-</u> . | The complete assembled dummy (127-0000) is used (572.125(c)(2)). | | | with legs below the femurs. | | | without legs below the femurs. | | 4. | The dummy assembly soaked at a temperature between 18.9°C (66°F) and | | | 25.6°C (78°F) and at a relative humidity from 10% to 70% for a period of at least | | | four (4) hours prior to this test. (572.135(c)(1)) | | | Record the maximum temperature | | | Record the minimum temperature | | | Record the maximum humidity Record the minimum humidity | | 5. | Secure the pelvis to the fixture at the pelvis instrument cavity rear face by | | J. | threading four ½x20x½ inch cap screws into the available threaded attachment holes. Tighten the mountings so that the test material is rigidly affixed to the test | | • | fixture and the pelvic lumbar joining surface is horizontal. (572.125(c)(3)) | | 6. | Attach the loading adapter bracket to the spine of the dummy as shown in | | 7 | Figure 11C. (572.125(c)(6)) | | 7. | Flex the dummy forward and back 3 times such that the angle reference plane moves between 0° and 30° with respect to the vertical transverse plane. | | | (572.125(c)(4)) | | 8. | | | | with respect to the vertical transverse plane). Wait at least 30 minutes before | | | continuing. (572.125(c)(4)) | | | Remove all external support that was implemented in 9 above. (572.125(c)(5)) | | 11. | Measure the initial orientation angle of the torso reference plane of the seated, | | | unsupported dummy. (572.135(c)(5)) | | 4.0 | Record reference plane angle (max. allowed 22°) | | | Attach the pull cable and the load cell. (572.125(c)(6)) | | 13. | Apply a tension force in the midsagittal plane to the pull cable at any upper torso | | | deflection rate between 0.5° and 1.5° per second, until the angle reference plane is at $45^{\circ} + 0.5^{\circ}$ of flexion relative to the vertical transverse plane $(572, 125(c)(7))$ | | 14. | 14. Maintain angle reference plane at $45^{\circ} \pm 0.5^{\circ}$ of flexion for 10 seconds. (572.125(c)(8)) | | | | | | |-------|---|-------------------------------|----------------------|--|--|--| | 15. | 15.
As quickly as possible release the force applied to the attachment bracket. (572.125(c)(9)) | | | | | | | 16. | ` ', ', ', | of the force, measure the re | ference plane angle. | | | | | 17. | Complete the following tab | le: | | | | | | | Torso Flexion Results (572 | 2.125(b), 572.125(c)(7), (572 | .125(c)(8)) | | | | | | Parameter Specification Result | | | | | | | | Initial ref. plane angle | Angle ≤ 22° | | | | | | | Torso rotation rate $0.5^{\circ}/\text{s} \le \text{rate} \le 1.5^{\circ}/\text{s}$ | | | | | | | | Force at $45^{\circ} \pm 0.5^{\circ}$ $147 \text{ N} \le \text{force} \le 200 \text{ N}$ | | | | | | | | Final ref. plane angle Initial ref. plane angle ±8° | | | | | | | | | | | | | | | Signa | Signature Date | | | | | | #### TORSO FLEXION TEST SET-UP SPECIFICATIONS ## FIGURE 11C # DATA SHEET C8 LEFT KNEE IMPACT TEST (572.126) | Dumn | mmy Serial Number Test Date | | |----------------|--|-------------------| | Techr | chnician | | | | Pretest calibration Post test calibration | | | Test a | st attempt no (when successive knee impact tests are necessary) | | | 1. | · · · · · · · · · · · · · · · · · · · | 7(o)) | | 2.
3. | N/A, ONLY one knee impact test performed The test fixture conforms to the specifications in Figure 12C. The knee assembly consisting of the knee machined (127-4013), knee (127-4011),lower leg (127-4014), foot assembly (127-4030-1), and femily transducer (SA572-S10) (may use the load cell structural replacement) | ur load | | 4. | 4007)) were used. (572.126(b)) | nd 25.6°C | | | Record the maximum temperature Record the minimum temperature Record the maximum humidity Record the minimum humidity | | | 5.
6.
7. | Mount the test specimen and secure it to the rigid test fixture. (572.126). No parts of the foot or tibia contact any exterior surface. (572.126(c)(2)). Align the test probe so that throughout its stroke and at contact with the within 2 degrees of horizontal and collinear with the longitudinal centerli |)
e knee it is | | 8. | femur. (572.126(c)(3)) The probe is guided so there is no significant lateral, vertical or rotation movement during the impact with the knee. (572.136(c)(4)) | al | | 9. | | | | 10. | Contact the knee with the test probe at a speed between 2.07 m/s and (572.126(c)(5)) Neither the suspension hardware, suspension cables, attachments to the probe, including the velocity vane, make contact with dummy. (572.126(c)(6) | nor other | | 11. | 11. Complete the following table: | | # Knee Impact Results (572.126(b)(1) and 572.126(c)(5)) | Parameter | Specification | Result | |------------------------|-----------------------------|--------| | Probe speed | 2.07 m/s ≤ speed ≤ 2.13 m/s | | | Peak resistance force* | 2000 N ≤ force ≤ 3000 N | | | *Force = impactor mass x dece | eleration (572.126(b) | | | | |--|-----------------------|--|--|--| | 12. Plots of acceleration versus time and force versus time follow this sheet. | | | | | | Signature | Date | | | | # DATA SHEET C9 RIGHT KNEE IMPACT TEST (572.126) | Dumn | ny Serial Number Test Date | |----------------|---| | Techr | nician | | | etest calibration
st test calibration verification | | Test a | attempt no (when successive knee impact tests are necessary) | | 1.
2.
3. | It has been at least 30 minutes since the last knee impact test. (572.127(o)) N/A, ONLY one knee impact test performed The test fixture conforms to the specifications in Figure 12C. The knee assembly consisting of the knee machined (127-4013), knee flesh (127-4011),lower leg (127-4014), foot assembly (127-4030-2), and femur load transducer (SA572-S10) (may use the load cell structural replacement (127-4007)) were used. (572.126(b)) The knee assembly soaked at a temperature between 18.9°C (66°F) and 25.6°C (78°F) and at a relative humidity from 10% to 70% for a period of at least four (4) hours prior to this test. (572.126(c)(1)) Record the maximum temperature Record the minimum temperature Record the maximum humidity | | 5.
6.
7. | Record the minimum humidity Mount the test specimen and secure it to the rigid test fixture. (572.126(c)(2)) No parts of the foot or tibia contact any exterior surface. (572.126(c)(2)) Align the test probe so that throughout its stroke and at contact with the knee it is within 2 degrees of horizontal and collinear with the longitudinal centerline of the femur. (572.126(c)(3)) | | 8. | The probe is guided so there is no significant lateral, vertical or rotational movement during the impact with the knee. (572.136(c)(4)) | | 9. | The data acquisition system, including transducers, must conform to the requirements of SAE Recommended Practice J211/1 MAR95 (572.136(m)) Class 600. | | _ | Contact the knee with the test probe at a speed between 2.07 m/s and 2.13 m/s. (572.126(c)(5)) Neither the suspension hardware, suspension cables, nor other attachments to the probe, including the velocity vane, make contact with the dummy. (572.126(c)(6) Complete the following table: | Knee Impact Results (572.126(b)(1) and 572.126(c)(5)) | Parameter | Specification | Result | |------------------------|-----------------------------|--------| | Probe speed | 2.07 m/s ≤ speed ≤ 2.13 m/s | | | Peak resistance force* | 2000 N ≤ force ≤ 3000 N | | | *Force = impactor mass x decel | *Force = impactor mass x deceleration (572.126(b) | | | | |--|---|--|--|--| | 12. Plots of acceleration versus time and force versus time follow this sheet. | | | | | | Signature | Date | | | | #### KNEE IMPACT TEST SET-UP SPECIFICATIONS Probe specifications (572.127(b)): - Rigid metallic construction, concentric in shape and symmetric about is longitudinal axis. - 2. A mass of 0.82 ± 0.02 kg (1.8 ± 0.05 lbs). 1/3 of the weight of the suspension cables and any attachments to the impact probe must be included in the calculation of mass, and such components may not exceed 5 percent of the total weight of the test probe. - 3. Minimum mass moment of inertia of 34 kg-cm² (0.03 lbs-in-sec²) in yaw and pitch about the center of gravity. - 4. The impacting end of the probe is perpendicular to and concentric with the longitudinal axis. It must have a flat, continuous, and non-deformable face with diameter of 76.2 \pm 0.2 mm (3.00 \pm 0.01 in) and an edge radius of 7.6-12.7 mm (0.3-0.5 in). - 5. The impactor is a cylinder with a diameter of 76-77 mm (3.0-3.1 in) and it is at least 12.5 mm (0.5 in) long. - 6. The probe's end opposite to the impact face must have provisions for mounting of an accelerometer with its sensitive axis collinear with the longitudinal axis of the probe. - 7. The impact probe shall have a free air resonant frequency of not less than 1000 Hz in the direction of the longitudinal direction of the impactor. #### FIGURE 12C # DATA SHEET C10 PART 572 INSTRUMENTATION CALIBRATION INFORMATION | I.D. NO. | MANUFACTURER | MODEL NO. | SERIAL NO. | DATE OF LAST
CALIBRATION | DATE OF NEXT
CALIBRATION | |---|--------------|------------------|------------|-----------------------------|-----------------------------| | | | DUMMY INSTRUM | ENTATION | | | | | | HEAD ACCELERO | OMETERS | | | | (1) LONGITUDINAL | | | | | | | (2) LATERAL | | | | | | | (3) VERTICAL | | | | | | | NECK TRANSDUCER | | | | | | | | | CHEST ACCELER | OMETERS | | | | (1) LONGITUDINAL | | | | | | | (2) LATERAL | | | | | | | (3) VERTICAL | | | | | | | CHEST
POTENTIOMETER | | | | | | | | | FEMUR LOAD | CELLS | | | | (1) RIGHT FEMUR | | | | | | | (2) LEFT FEMUR | | | | | | | | | LABORATORY INSTR | UMENTATION | | | | NECK PENDULUM
ACCELEROMETER | | | | | | | THORAX PENDULUM
ACCELEROMETER | | | | | | | KNEE PENDULUM
ACCELEROMETER | | | | | | | NECK ROTATION
TRANSDUCER 1
(OPTIONAL) | | | | | | | NECK ROTATION
TRANSDUCER 2
(OPTIONAL) | | | | | | | LABORATORY TECHNICIAN: | | |------------------------|--| | | |